B.A 5th Semester (General) Examination, 2021 (CBCS)

Subject: Mathematics Course: BAMATH5GE1 (Calculus)

Time: 3 Hours Full Marks: 60

The figures in the margin indicate full marks.

Candidates are required to write their answers in their own words as far as practicable.

[Notation and Symbols have their usual meaning]

1.	Answ	er any six questions:	6×5 = 30	
(a)		If $y = x^{n-1}\log x$, then show that $y_n = \frac{(n-1)!}{x}$.		[5]
(b)		If $f(x) = ax^2 + 2hxy + by^2 + 2gx + 2fy + c$, find f_x and f_y .		[5]
(c)		If $u = tan^{-1}\frac{x}{y} + sin^{-1}\frac{y}{x}$, evaluate: $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y}$.		[5]
(d)		Show that $\int_{0}^{1} \frac{\log \mathbb{E}(1+x)}{1+x^{2}} dx = \frac{\pi}{8} \log 2$.		[5]
(e)		Find $\int_0^{\frac{\pi}{2}} \cos^n x dx$.		[5]
(f)		Solve: $2xydx - (x^2 - y^2)dy = 0$.		[5]
(g)		Solve: $\frac{dy}{dx} = \frac{x+y+1}{3x+3y+1}$.		[5]
(h)		Solve: $e^x \sin y dx + (e^x + 1)\cos y dy = 0$.		[5]
2. Answer any three questions:			$10 \times 3 = 30$	
(a)	(i)	Find the area enclosed by the curve $a^2x^2 = y^3(2a-y)$.		[5]
	(ii)	Solve: $y(1+xy)dx - xdy = 0$.		[5]
(b)	(i)	Find the radius of curvature at the origin of the curve $y = x^4 - 4x^3 - 18x^2$.		[5]
	(ii)	Find the condition that the conics $ax^2+by^2=1$ and $a_1x^2+b_1y^2=1$ shall cut orth	ogonally.	[5]
(c)	(i)	Find the derivative of x^n from first principle.		[5]
	(ii)	Find the asymptotes of the curve $y = e^{ax}$.		[5]
(d)	(i)	Use reduction formula to evaluate $\int_0^{\frac{\pi}{2}} \sin^9 x dx$.		[5]
	(ii)	Show that $\int_0^a f(x)dx = \int_0^a f(a-x)dx$.		[5]
(e)	(i)	Solve $(x^2+y^2)dx - 2xydy = 0$.		[4]

Evaluate $\lim_{x\to 0} \frac{\sin x - \tan x}{x^3}$.

(ii)

[6]