B.A 5th Semester (General) Examination, 2020 (CBCS)

Subject: Mathematics

Course: BAMATH5GE1 (Calculus)

The figures in the margin indicate full marks.

Full Marks: 60

[4]

[6]

Time: 3 Hours

Candidates are required to write their answers in their own words as far as practicable. [Notation and Symbols have their usual meaning] **Answer any six questions:** $6 \times 5 = 30$ 1. State and prove Leibnitz's theorem on successive differentiations. (a) [5] If $f(x) = ax^2 + 2hxy + by^2$ find f_x and f_y (b) [5] If $u = \sin^{-1}\frac{x}{y} + \tan^{-1}\frac{y}{x}$ then show that $x\frac{\partial u}{\partial v} + y\frac{\partial u}{\partial v} = 0$. (c) [5] Show that $\int_0^1 \frac{\log (1+x)}{1+x^2} dx = \frac{\pi}{8} \log 2.$ (d) [5] Evaluate the integral: $\int_0^{\frac{\pi}{2}} \sin^n x \, dx$. [5] (e) Solve: $(x^3+v^3)dx-xv^2dv=0$. (f) [5] Solve: $\frac{dy}{dx} + x \sin 2y = x^3 \cos^3 y$. [5] (g) Show that $\cos v \, dx + (1 + e^x) \sin v \, dv = 0$. (h) [5] 2. Answer any three questions: $10 \times 3 = 30$ Prove that the area of whole ellipse is πab . (a) (i) [5] Solve: y(1 + xy)dx - xdy = 0. (ii) [5] (b) Find the radius of curvature at the point (r,θ) on the cardioide, $r = \alpha(1 - \cos \theta)$. (i) [5] Find the condition that the conics $ax^2+by^2=1$ and $cx^2+dy^2=1$ will cut orthogonally. (ii) [5] Find the derivative of the function $f(x)=x^3+2x$ from the first principles. (i) [5] (c) Find the asymptotes of the curve $2x(y-5)^2=3(y-2)(x-1)^2$. (ii) [5] (d) Use reduction formula to evaluate $\int_0^{\frac{\pi}{2}} \cos^9 x dx$. [5] (i) Show that $\int_0^a f(x)dx = \int_0^a f(a-x)dx$. (ii) [5]

Solve: $(x^2+y^2)dx-2xydy=0$.

Show that $\lim_{x\to 0} \frac{(1-x)^n-1}{x} = 0$.

(i)

(ii)

(e)