B.A./B.Sc. 6th Semester (General) Examination, 2021 (CBCS)

Subject: Mathematics Course: BMG6DSE1B1 (Numerical Methods)

Time: 3 Hours Full Marks: 60

The figures in the margin indicate full marks.

Candidates are required to write their answers in their own words as far as practicable.

[Notation and Symbols have their usual meaning]

4	A		•	4 •
	Anctuar	Ont	CIV	anactione.
	Allowel	anv	DIA.	questions:
				1

 $6 \times 5 = 30$

- (a) Explain the method of bisection for computing a real root of the equation f(x) = 0. [3+2] What are its advantages and disadvantages?
- (b) (i) Deduce the condition of convergence of Newton Raphson iteration formula. [3]
 - (ii) The equation $x^2 + ax + b = 0$ has two real roots α and β . Show that the iteration method $x_{k+1} = -\frac{ax_k + b}{x_k}$ is convergent near $x = \alpha$ if $|\alpha| > |\beta|$.
- (c) Solve the following system of equations,

[5]

$$x_1 + x_2 + 4x_3 = 9$$

$$8x_1 - 3x_2 + 2x_3 = 20$$

$$4x_1 + 11x_2 - x_3 = 33$$

by Gauss Seidel iteration method up to two decimal places.

- (d) Derive Lagrange's interpolation formula when the function f(x) is known to have [5] (n+1) distinct values at the points $x_0, x_1, x_2, x_3, ..., x_n$.
- (e) Prove that $\Delta^n \left(\frac{1}{x}\right) = \frac{(-1)^n \cdot n! \cdot h^n}{x \cdot (x+h) \cdot (x+2h) \cdot \dots \cdot (x+nh)}$ for any positive integer n, Δ being forward difference operator and h being the step length. [5]
- (f) (i) Find the relation between difference operator Δ and $D \equiv (\frac{d}{dx})$ of differential calculus. [2]
 - (ii) Estimate the missing term in the following table:

[3]

- (g) Describe Trapezoidal rule for two points by using Newton's forward interpolation and [2+3] the corresponding error.
- (h) Define order of convergence of an iterative method. Show that the following sequence [1+4] have convergence of the second order with the limit \sqrt{a} , $x_{n+1} = \frac{1}{2}x_n(1 + \frac{a}{x_n^2})$

2. Answer any three questions:

 $10 \times 3 = 30$

- (a) (i) Explain Euler's method for numerical solution of a first order differential equation $\frac{dy}{dx} = f(x, y) \text{ subject to the condition } y = y_0 \text{ when } x = x_0.$
 - (ii) Obtain Simpson's $\frac{1}{3}rd$ rule for numerical integration in composite form. Use this to [3+3] calculate $\int_0^1 x^2 (1-x) dx$ correct upto three decimal places, taking step length equal to 0.1.
- (b) (i) Establish Newton's Backward interpolation formula.

[5]

(ii) Find the cubic polynomial which takes the following values,

x: 1 3 5 7 y: 24 120 336 720

- (c) (i) Describe the Regula-Falsi method for computing a real root of the equation f(x) = 0. [5+2] Give the geometrical significance of this method.
 - (ii) Obtain the Newton-Raphson iteration formula for computing \sqrt{N} , where N is a positive integer.
- (d) (i) Deduce the condition of convergence of fixed point iteration method. [5]
 - (ii) The equation $f(x) = 3x^3 + 4x^2 + 4x + 1 = 0$ has a root in (-1, 0). Determine the iterative function $\varphi(x)$ such that the iteration formula $x_{n+1} = \varphi(x_n)$, $x_0 = -0.5$, n = 0,1,2,... converges to the root.
- (e) (i) Solve the following system of equation by LU-decomposition method: [6]

$$x_1 + x_2 - x_3 = 2$$

 $2x_1 + 3x_2 + 5x_3 = -3$
 $3x_1 + 2x_2 - 3x_3 = 6$

(ii) Find by Euler's method, the value of y for x = 0.3 from the differential equation, $\frac{dy}{dx} = \frac{y-x}{y+x}$ taking step length 0.1, given that y = 1 when x = 0.

B.A./B.Sc. 6th Semester (General) Examination, 2021 (CBCS) Subject: Mathematics Course: BMG6DSE1B2

(Complex Analysis)

Time: 3 Hours Full Marks: 60

The figures in the margin indicate full marks.

Candidates are required to write their answers in their own words as far as practicable.

[Notation and Symbols have their usual meaning]

1. Answer any six questions:

 $6 \times 5 = 30$

[5]

- (a) (i) Define the differentiability of a function of complex variable at a point. [2]
 - (ii) Prove that the differentiability of f at a point z_0 implies the continuity of the function at the same point. [3]
- (b) Show that the function $u = cosx \cdot coshy$ is harmonic and find its harmonic conjugate. [2+3]
- (c) State Laurent's theorem. Find the Laurent's series expansion of the function, $\frac{z^2-1}{(z+2)(z+3)}$, when $|z| \le 2$.
- (d) Prove that a real valued function of a complex variable either has derivative zero or the derivative does not exist. [5]
 - (i) Define bilinear transformation.
- (e) (ii) Find the bilinear transformation which maps the points $z = \infty, i, 0$ into the points [2+3] $w = 0, i, \infty$ respectively.
- (f) Prove that an analytic function with constant modulus in a region is constant. [5]

- (g) Define radius of convergence of a power series. Find the radius of convergence of the [2+3] power series $\sum \frac{z^n}{2^n+1}$.
- (h) Using contour integration, prove that $\int_{-\infty}^{\infty} \frac{x^2}{(x^2 + a^2)^3} dx = \frac{\pi}{8a^3}$. [5]

2. Answer any three questions:

 $10 \times 3 = 30$

(a) (i) State and prove Liouville's theorem.

[1+5]

- (ii) Find the Taylor's series which represents the function $f(z) = \frac{1}{(1+z^2)(z+2)}$ when [4] 1 < |z| < 2.
- (b) (i) If f(z) is continuous in a region D and if the integral $\int f(z)dz$, taken round about any simple closed contour in D, is zero then prove that f(z) is an analytic function inside D.
 - (ii) Show that both the transformations $w = \frac{z-i}{z+i}$ and $w = \frac{i-z}{i+z}$ transforms $|w| \le 1$ into [5] the upper half plane $I(z) \ge 0$.
- (c) (i) If f(z) is analytic within and on a simple closed contour C, and a is any point within C, then prove that $f'(a) = \frac{1}{2\pi i} \int_C \frac{f(z)dz}{(z-a)^2}$.
 - (ii) Let f be analytic in a region G. Prove the following: [2+3] (i) If f'(z)=0 on G then f is constant.
 - (ii) If either Re f or Im f is constant on G, then f is constant on G.
- (d) (i) Calculate the following integrals: [3+3] $(I) \int_C \frac{e^z dz}{(z-1)(z+3)^2} , \text{ where C is the circle } |z| = \frac{3}{2} \text{ and the integral is taken in the positive sense.}$
 - (II) $\int_C \frac{z^2+2z+1}{(z+1)^3} dz$, where C is the circle |z| = 2.
 - (ii) Show that the function $f(z) = z^3$ is analytic in a domain D of the complex plane C. [4]
- (e) (i) Consider the function f defined by, $f(z) = \left(\frac{x^3 y^3}{x^2 + y^2}\right) + i\left(\frac{x^3 + y^3}{x^2 + y^2}\right), \text{ when } z \neq 0$ = 0, when z = 0.

Show that the function f satisfies the Cauchy-Riemann equations at the origin, but f is not differentiable at z=0.

(ii) If a function of complex variable f is differentiable at a given point, then give an example to support that |f| may not be differentiable at the same point.

B.A./B.Sc. 6th Semester (General) Examination, 2021 (CBCS)

Subject: Mathematics Course: BMG6DSE1B3 (Linear Programming)

Time: 3 Hours Full Marks: 60

The figures in the margin indicate full marks.

Candidates are required to write their answers in their own words as far as practicable.

[Notation and Symbols have their usual meaning]

1.	Answ	nswer any six questions: $6 \times 5 =$	
(a)	(i)	Define a convex set.	[2]
	(ii)	Show that the hyper plane is a convex set.	[3]
(b)		Show that the dual of the dual is the primal itself.	[5]
(c)		Solve the following problem graphically,	[5]
		$Max Z = 6x_1 + 10x_2$	
		subject to $3x_1+5x_2 \le 10$	
		$5x_1 + 3x_2 \le 15$	
		and $x_1, x_2 \ge 0$	
(d)		Food x contains 6 units of vitamin A and 7 units of vitamin b per gram and costs	[5]
		12p/gm. Food y contains 8 units and 12 units of A and B per gram respectively and	
		costs 20p/gm. The daily requirements and vitamin A and vitamin B are at least 100	
		units and 120 units respectively. Formulate the above as an L.P.P to minimize the cost.	
(e)	(i)	State the fundamental theorem of duality.	[3]
	(ii)	Show that the set, $X = \{(x_1, x_2): x_1^2 + x_2^2 = 16\}$ is not a convex set.	[2]
(f)		Use two phase simplex method to solve the problem	
		Maximize $Z=2x_1+x_2+x_3$	
		Subject to $4x_1+6x_2+3x_3 \le 8$	
		$3x_1-6x_2-4x_3 \le 1$	
		$2x_1 + 3x_2 - 5x_3 \ge 4$	
		and $x_1, x_2, x_3 \ge 0$	
(g)		Solve the following system of linear simultaneous equations using the Simplex	[5]
		method, $x_1+x_2=1$, $2x_1+x_2=4$	
(h)		Solve the following problem by simplex method	
		Max $Z = 3x_1 + x_2 + 3x_3$	
		Subject to $2x_1+x_2+3x_3 \le 2$	
		$x_1 + 2x_2 + 3x_3 \le 5$	
		$2x_1 + 2x_2 + x_3 \le 6$	
		$x_1, x_2, x_3 \ge 0$	

2. Answer any three questions:

 $10 \times 3 = 30$

(a) (i) Solving the dual problem, obtain the optimal solution of

Min
$$Z = 4x_1 + 3x_2$$

Subject to $x_1+2x_2 \ge 8$

$$3x_1+2x_2 \ge 12$$
,

$$x_1, x_2 \ge 0$$

(ii) Determine the position of the point (1,-2, 3,4) relative to the hyperplane,

[7]

$$4x_1 + 6x_2 + 2x_3 + x_4 = 2$$

(b) (i) Show that the set of all feasible solutions of the system Ax=b, $x \ge 0$ is a convex set.

[5]

(ii) Solve graphically,

$$Min Z = 2x_1 + 3x_2,$$

Subject to
$$2x_1+7x_2 \ge 22$$

$$x_1 + x_2 \ge 6$$

$$5x_1+x_2 \ge 10$$

and
$$x_1, x_2 \ge 0$$

(c) (i) Verify graphically whether the following problem has bounded or unbounded solution,

[6]

Max
$$Z= 3x_1+2x_2$$

Subject to, $x_1 \le 3$,

$$x_1 - x_2 \le 0$$
,

and
$$x_1, x_2 \ge 0$$
.

(ii) Define hyperplane. Show that $X = \{x : |x| \le 2\}$ is a convex set.

[2+2]

(d) Using Big-M method, solve the following the problem,

[10]

Maximize
$$Z=8x_2$$
,

Subject to
$$x_1 - x_2 \ge 0$$

$$2x_1 - 3x_2 \le 6$$
,

 x_1 , x_2 are unrestricted in sign.

(e) Let $x_1=2$, $x_2=3$, $x_3=1$ be a feasible solution of the following LPP.

[10]

Max
$$Z = x_1 + 2x_2 + 4x_3$$

Subject to
$$2x_1 + x_2 + 4x_3 = 11$$

$$3x_1 + x_2 + 5x_3 = 14$$

and
$$x_1, x_2, x_3 \ge 0$$
.

Reduce the above feasible solution to basic feasible solutions.